7,7-Dicyano-8,8-bis[4-(*N*,*N*-dimethylamino)phenyl]-*meta*-xylylenes: The First Stable Zwitterionic Metaxylylene Derivatives

Takeshi Kawase,* Tohru Iwata, and Masaji Oda*

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043

(Received December 26, 2002; CL-021103)

Treatment of 3-lithiophenyldicyanomethide ions with Michler's ketone afforded the title compounds as stable crystals upon weak-acidic work-up. The molecular structure and spectroscopic data reveal the zwitterionic nature of the compounds.

Metaxylylene 1 is potentially regarded as a resonance hybrid between a diradical form A and a zwitterionic form B. Although the diradical A has been received much attention mainly from the viewpoints of high-spin organic compounds,¹ few studies on the zwitter ion B have been performed so far.² Recently we have reported the highly polarized character of 7,7-dicyano-8,8-bis(4dimethylaminophenyl)-*p*-quinodimethane (2).³ The results suggest that appropriate substituents on each *exo*-methylene carbon would stabilize the zwitterionic structure to a great extent. Several nearly zwitterionic quinoid systems have been synthesized so far.⁴ In these systems, steric crowding plays an important role in increasing the dipolarity. Here we report the synthesis, properties and molecular structure of the first zwitterionic metaxylylene derivative.

Treatment of 4-lithiophenyldicyanomethide lithium with diarylketones effectively afforded the highly polarized paraxylylenes.³ The results suggest that 3-lithiophenyldicyanomethide lithiums **3** would be promising synthetic tools for **1B**. 3-Bromophenyl- and 3-bromo-5-*tert*-butylphenylmalononitrile (**4a**) and (**4b**)⁵ were prepared from *m*-dibromobenzene or 1,3dibromo-5-*tert*-butylbenzene and malononitrile by the Takahashi's method⁶ in 67% and 80% yields, respectively. Treatment of **4a** with 2.4 equiv. of *n*-BuLi at $-78 \degree C$ for 1 h cleanly generated the corresponding dianion **3a**. The generation was confirmed by quenching with methyliodide to give a dimethylated compound **5**⁵ in 88% yield.

Quenching of **3a** and **3b** with Michler's ketone followed by addition of aqueous ammonium chloride gave zwitter ions **6a** and **6b** as green solutions. The compounds are extractable with ethyl

acetate from the weak acidic solutions. Metallic green plates of **6a** precipitated from the extract upon standing for overnight. The crystal is poorly soluble in common organic solvents. On the other hand, the *tert*-butyl derivative **6b** is relatively soluble in organic solvents and readily purified by column chromatography on silica gel. The reaction of **3a** with 4,4'-dimethoxybenzophenone afforded a corresponding triarylmethanol 7^5 in good yield upon similar work-up. Dehydrative treatments of **7** under several conditions have failed to give the corresponding zwitterionic species so far.

Scheme 1. (i) a) 2.2 eq. *n*-BuLi/THF, -78 °C, 1 h, b) Michler's ketone, rt, 1 h, c) sat. NH₄Cl aq, 64% for **6a**, 63% for **6b**.

Appearance of NMR signals reveals little contribution of the diradical structure A in **6**.⁵ The chemical shifts of the dicyanomethylene carbon (C β : δ 29.42) and the central quarternary carbon (C α : δ 183.10) of **6b** in CDCl₃ are comparable to those of phenyldicyanomethyl anion **8** (δ 27.80 in CD₃OD) and Malachite Green **9** (δ 187.4 in DMSO-*d*₆),⁷ respectively. The difference, $\Delta\delta$ (C α -C β) = 153.7 ppm, is 38.3 ppm larger than that of **2** ($\Delta\delta$ = 115.4), and almost comparable to that of the ¹³C shifts dependence on the π charge (167 ppm/ π electron),⁸ clearly suggesting the zwitterionic nature of **6b**. Although the signals of quarternary carbons of **6a** was not observed because of the low solubility, the similar IR frequencies of nitrile stretching as those of **6b** (v/cm⁻¹: 2125, 2168 for **6a** and 2128, 2170 for **6b**) also indicate the zwitterionic nature of **6a**.

Careful crystallization of **6a** from an extract successfully afforded good single crystals.⁹ The crystals contained both ethyl acetate and THF as inclusion (**6a** : ethyl acetate : THF = 1 : 0.75 : 0.25 by NMR). Recrystallization of **6a** in pure ethyl acetate or THF have failed to afford good single crystals so far. Figure 1 shows molecular structures of **6a**. Little pyramidization of both C α and C β carbons and the low twisted angle between dicyanomethyl group and A ring (>2°) indicate that **6a** has a fully conjugated system on the metaxylylene structure. The molecule has a propeller structure similar to triphenylmethyl cation **10** as expected. The average of twisted angles between aryl groups (57.0°) is smaller than that of **10** (64.8°).¹⁰ The zwitterion forms a dimeric structure in crystal: the dicyanomethylphenyl group A is faced to the dimethylaminophenyl group B of an adjacent molecule. The included solvent molecules are placed in

Figure 1. Left; ORTEP drawing of **6a**: right; side view. Included solvent molecules removed for clarity. Dihedral angle between planes (°). plane A-plane B = 58.75, plane A-plane C = 60.54, plane B-plane C = 51.75.

the interspace of **6a**. The disorder is responsible for the low accuracy of the analysis.

The absorption spectrum of 6a similar to that of 9 shows small solvent effects ($\lambda_{max} = 607 \text{ nm/CH}_3\text{OH}$; 608 nm/CH₂Cl₂). In contrary to the quinodimethane 2, 6a exhibits no chargetransfer band.¹¹ The absorption change of **6a** at various pH (Figure 2) indicates that pK_a of **11**, the conjugate acid of **6a**, is estimated to be 3.4 unit. Thus, **11** is the stronger acid than **8** ($pK_a =$ 5.3) by 1.9 pK units. Whereas the color of 9 disappeared rapidly in strong basic media (EtOH-NaOH aq. pH = 13.22), the long wavelength absorption of 6a slowly decreased under the conditions. After standing for a day, the solution of 6a discolored completely. Regeneration of 6a by neutralizing the solution ended in failure, which indicated that irreversible decomposition occurred in the basic media (Scheme 2). The accurate pK_{R^+} value was not determinable; however, the cationic character of 6a is apparently higher than that of 9. The presence of both charges in the molecule would play an important role in increasing the stability.

Figure 2. Change of electronic spectra of **6a** at various pH in EtOH–buffer solutions (CH₃COOH-CH₃COONa).

In conclusion, we report the first synthesis of zwitterionic metaxylylene derivatives $\mathbf{6}$ as stable crystalline materials. With keeping their planarity, $\mathbf{6}$ retain the individual electronic properties of each component probably owing to the novel metaxylylene conjugation.

This work was supported by Grant-in-Aids for Scientific

Research (No. 10146102 and 14340197) from Ministry of Education, Science, Sports and Culture, Japan.

References and Notes

- M. Baumgarten and K. Müllen, *Top. Curr. Chem.*, **169**, 1 (1994); A. Rajica, *Chem. Rev.*, **94**, 871 (1994); A. Rajca, *Chem. —Eur. J.*, **8**, 4835 (2002).
- 2 R. Gompper and H.-U. Wagner, *Angew. Chem., Int. Ed.*, **27**, 690 (1988).
- 3 T. Kawase, M. Wakabayashi, C. Takahashi, and M. Oda, *Chem. Lett.*, **1997**, 1055; T. Kawase, M. Wakabayashi, and M. Oda, *Chem. Lett.*, **1997**, 1057.
- 4 K. Takahashi, J. Syn. Org. Chem. Jpn., 44, 806 (1986); A. Z.-Q. Kahn and J. Sandström, J. Am. Chem. Soc., 110, 4843 (1988); S. Inoue, Y. Aso, and T. Otsubo, Chem. Commun., 1997, 1105.
- 4a: colorless needles (Bz/n-Hex); mp 99–101 °C; ¹H NMR (CDCl₃, 5 270 MHz) δ ppm = 5.04 (s, 1H), 7.39 (t, J = 7.9 Hz, 1H), 7.47 (d, J = 7.9 Hz, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.67 (s, 1H); ¹³C NMR $(CDCl_3, 67.8 \text{ MHz}) \delta \text{ ppm} = 27.46, 111.29, 123.76, 125.81,$ 128.03, 130.20, 131.38, 133.57; IR (KBr) ν/cm^{-1} 2260 m (C=N). 4b: colorless needles (Bz/n-Hex); mp 72–74 °C; ¹H NMR (CDCl₃, 270 MHz) δ ppm = 1.33 (s, 9H), 5.02 (s, 1H), 7.41 (t, J = 1.7 Hz, 1H), 7.48 (t, J = 1.7 Hz, 1H), 7.63 (d, J = 1.7 Hz, 1H); ¹³C NMR $(CDCl_3, 67.8 \text{ MHz}) \delta \text{ ppm} = 27.75, 31.00, 35.30, 111.38, 123.06, 123.79, 127.37, 127.64, 131.00, 155.80; IR (KBr) v/cm^{-1} 2251 \text{ m}$ $(C \equiv N)$. 5: colorless oil; ¹H NMR (CDCl₃, 270 MHz) δ ppm = 2.10 (s, 3H), 2.42 (s, 3H), 7.25-7.28 (m, 1H), 7.36-7.38 (m, 3H), IR (KBr) v/cm⁻¹ 2250 m (C \equiv N). 6a: green plates; mp > 220 °C; Mass (FAB): m/z = 392 (M)⁺; ¹H NMR (CD₃OD, 270 MHz) δ ppm = 3.27 (s, 12H), 6.59 (d, J = 6.6 Hz, 1H), 6.82 (s, 1H), 7.00 (d, J = 9.2 Hz, 4H), 7.17–7.28 (m, 2H), 7.44 (d, J = 9.2 Hz, 4H). **6b**: green plates; m.p. 204–206 °C; Mass (FAB): $m/z = 449 (M+H)^+$; ¹H NMR (CDCl₃, 600 MHz) δ ppm = 1.25 (s, 9H), 3.28 (s, 6H), 6.47 (t, J = 1.8 Hz, 1H), 6.78 (d, J = 9.3 Hz, 4H), 6.79 (t, J = 1.8 Hz, 1H), 7.39 (d, J = 9.3 Hz, 4H), 7.45 (t, J = 1.8 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz) δ ppm = 29.42, 31.27, 34.74, 40.71, 112.76, 122.72, 123.67, 123.93, 126.92, 127.59, 139.26, 141.13, 142.74, 150.77, 156.70, 183.10.7: colorless needles (Bz/n-Hex); mp 96–98 °C; ¹H NMR (CDCl₃, 400 MHz) δ ppm = 3.77 (s, 6H), 4.99 (s, 1H), 6.82 (AA'BB', J = 2.6, 8.9 Hz, 4H), 7.12 (AA'BB', J = 2.6, 8.9 Hz, 4H), 7.39–7.41 (m, 2H), 7.53 (s, 1H); IR (KBr) v/cm⁻¹ 2255 w (C \equiv N), 3489 br (OH).
- 6 M. Uno, K. Sato, M. Masuda, W. Ueda, and S. Takahashi, *Tetrahedron Lett.*, 26, 1553 (1985).
- 7 C. Avendano, C. de Diego, and J. Elguero, *Magn. Reson. Chem.*, **28**, 1011 (1990).
- 8 D. H. O'Brein, A. J. Hart, and C. R. Russel, J. Am. Chem. Soc., 97, 4410 (1975).
- 9 Crystal data for **6a**· (CH₃COOC₂H₅)_{0.75}(THF)_{0.25} (The composition was determined by NMR.): monoclinic; space group $P2_1/c$ (#14), a = 10.147(1) Å, b = 22.508(3) Å, c = 10.837(1) Å, $\beta = 99.723(4)^{\circ}$, V = 2439.6(5)3, Z = 4, $D_{calcd} = 1.069$ g·cm³, R1 = 9.0%. The data were deposited in Cambridge Crystallographic Data Center (CCDC 202240).
- 10 A. H. G. de Mesquita, C. H. Macgillavry, and K. Eriks, Acta Crystallogr., 18, 437 (1965).
- 11 W. Rettig, Angew. Chem., Int. Ed., 25, 971 (1986).